Print-Logo Deutscher Zukunftspreis

Nominee 2004

Laser Scanning Mikroskop

Confocal Laser Scanning Microscope LSM 510 META

Dr. rer. nat. Dipl.-Phys. Ulrich Simon (Spokesperson)
Dipl.-Phys. Ralf Wolleschensky
Dr. rer. nat. Bernhard Zimmermann
Carl Zeiss Jena GmbH, Jena

(f.l.t.r.) Dr. rer. nat. Bernhard Zimmermann, Dr. rer. nat. Dipl.-Phys. Ulrich Simon, Dipl.-Phys. Ralf Wolleschensky

Laser microscopes make molecular structures in living cells visible to the eye – an important tool when tracking down cancerous tumors. The difficulty: it is often impossible to differentiate between the different types of molecules. How can laser microscopes help us see more?

Ulrich Simon, Ralf Wolleschensky and Bernhard Zimmermann succeeded in reaching this goal with an innovative detection process. All three of the nominated researchers work for Carl Zeiss Jena GmbH: Ulrich Simon heads the division Microscopy as Executive Vice President and General Manager, Ralf Wolleschensky is development project manager for Advanced Imaging Microscopy, and Bernhard Zimmermann heads product management for the division.

A laser lets marked proteins glow

Biomedical research uses laser microscopy to identify cellular structures. This technology makes structures and processes of movement in cells visible with high spatial accuracy. Functions and dysfunctions can be recognized on the images – and can be used to detect defective growth or, for example, tumors.

Fluorescence technology is used to mark objects: components in samples are marked with dyes which then – excited by a laser – emit light and thus become visible. With the fluorescent proteins used, it is possible to mark almost all kinds of protein molecules, but the overlapping colors in the color spectrum do now allow for a definite differentiation of the dyed specimens under a microscope.

The method developed by the researchers from Jena, however, is entirely different: it combines an innovative method of detection with a mathematical analytic process – and thereby makes multifluorescence images of living cells possible even given overlapping of the fluorescence emission spectra.

Mathematics help separate colors
How it works: an optical grating separates the fluorescent emissions of the samples in their color components which are then imaged on a multi-channel detector. The detector measures the exact color distribution of the fluorescence spectrum of every pixel. In this way, the spectral intensity distribution of all sample pixels can be determined. If several dyes are then bound to one sample pixel, the emission spectrum shows the overlapping of the individual colors. These signals are mathematically separated. An image with dyed structures in different colors then becomes visible.

Numerous marked cell and tissue components can be analyzed simultaneously with this process. The components can be easily and accurately typed and dynamic interrelations to living cells can be clearly traced. The new technology which increases the efficiency and speed of analysis has been incorporated in the LSM 510 META Laser Scanning Microscope from Carl Zeiss Jena GmbH.

The right to nominate outstanding achievements for the German Future Award is incumbent on leading German institutions in Science and Industry as well as foundations.

The project “Confocal Laser Scanning Microscope LSM 510 META” was nominated by the Bundesverband der Deutschen Industrie (BDI, Federation of German Industries).

more details

Resumes

Dr. rer. nat. Dipl.-Phys. Ulrich Simon

Dr. rer. nat. Dipl.-Phys. Ulrich Simon

15.10.1963
geboren in Bonn
1982 – 1989
Studium der Physik an der Rheinischen Friedrich-Wilhelm Universität Bonn
1983
Praktikum in Elektronik am Forschungszentrum für Angewandte Naturwissenschaften E. V. (FGAN), Wachtberg-Werthoven
1985
Praktikum in Laserphysik am Institut für Angewandte Physik (IAP), Universität Bonn
1989 – 1991
Wissenschaftlicher Mitarbeiter, Universität Bonn
1991
Promotion in Physik, Universität Bonn
1992 – 1993
Robert A. Welch Postdoctoral Fellow, William Marsh Rice University, Houston, Texas, USA
1993 – 1994
Feodor Lynen Fellow der Alexander-von-Humboldt-Stiftung, William Marsh Rice University, Houston, Texas, USA
1993
Forschungsaufenthalt im Naval Research Laboratory (NRL), Washington, D.C., USA
1993, 1994
Forschungsaufenthalte am National Institute of Standards and Technology (NIST), Boulder, Colorado, USA
1994 – 1995
Entwicklungsingenieur für die Laser Scanning Mikroskope im Unternehmensbereich Mikroskopie, Carl Zeiss Jena GmbH
1995 – 1996
Projektleiter für das Laser Scanning Mikroskop LSM 510 META, Carl Zeiss Jena GmbH
1996 – 1998
Entwicklungsleiter Scanning Mikroskopie, Carl Zeiss Jena GmbH
1998 – 1999
Produktgruppenleiter Scanning Mikroskopie, Carl Zeiss Jena GmbH
1999 - 2002
Geschäftsbereichsleiter (Vice President and General Manager) des Geschäftsbereiches Advanced Imaging Microscopy, Carl Zeiss Jena GmbH
seit 2002
Unternehmensbereichsleiter (Executive Vice President and General Manager) des Unternehmensbereiches Mikroskopie, Mitglied der Gruppenleitung der Carl Zeiss AG, Jena

Dipl.-Phys. Ralf Wolleschensky

Dipl.-Phys. Ralf Wolleschensky

15.10.1972
geboren in Jena
1992 – 1998
Studium der Physik an der Friedrich-Schiller-Universität, Jena
1995 – 1996
Auslandsstudium der Physik an der University of Essex, Colchester, UK
1997
Förderstipendium der Carl-Zeiss-Schott-Förderstiftung im Stifterverband für die Deutsche Wissenschaft
1998
Diplom an der Friedrich-Schiller-Universität, Jena
1998 – 2000
Wissenschaftlicher Mitarbeiter im Unternehmensbereich Mikroskopie, Carl Zeiss Jena GmbH
seit 2000
Entwicklungsprojektleiter im Geschäftsbereich Advanced Imaging Microscopy, Carl Zeiss Jena GmbH

Ehrungen:

1999
Fakultätspreis der Friedrich-Schiller-Universität Jena für die beste Diplomarbeit des Studienjahres

Dr. rer. nat. Bernhard Zimmermann

Dr. rer. nat. Bernhard Zimmermann

18.08.1962
geboren in München
1981 – 1987
Studium der Biologie (Diplom) an der Universität Regensburg
1987 – 1989
Ziviler Ersatzdienst am Institut für Zell-Pathologie der Gesellschaft für Strahlen- und Umweltforschung, München
1989 – 1992
Promotion in Biologie, Universität Regensburg
1992 – 1993
Post-Graduierten Studien am Institut für Biologie I, Universität Regensburg
1993 – 1994
Ausbildungsstipendium der Deutschen Forschungsgemeinschaft am Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, USA
1994 – 1995
Research Scientist am Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, USA
1995 – 2001
Wissenschaftlicher Angestellter/Assistent am Institut für Biochemie und Biologie, Lehrstuhl für Zoophysiologie der Universität Potsdam
2001 – 2003
Produktmanager für konfokale Laser Scanning Mikroskope im Geschäftsbereich Advanced Imaging Microscopy, Carl Zeiss Jena GmbH
seit 2003
Leiter Produktmanagment im Geschäftsbereich Advanced Imaging Microscopy, Carl Zeiss Jena GmbH

Contact 

Spokesperson

Dr. rer. nat. Dipl.-Phys. Ulrich Simon
Carl Zeiss Jena GmbH
Leiter des Unternehmensbereiches Mikroskopie
Carl-Zeiss-Promenade 10
07745 Jena
Tel.: +49 (0) 3641 / 64 32 22
Fax: +49 (0) 3641 / 64 33 47
E-Mail: u.simon@zeiss.de

Press

Gudrun Vogel
Carl Zeiss Jena GmbH
Kommunikation
Carl-Zeiss-Promenade 10
07745 Jena
Tel.: +49 (0) 3641 / 64 27 70
Fax: +49 (0) 3641 / 64 29 41
E-Mail: g.vogel@zeiss.de

A description provided by the institutes and companies regarding their nominated projects

Laser microscopes make molecular structures in living cells visible to the eye – an important tool when tracking down cancerous tumors. The difficulty: it is often impossible to differentiate between the different types of molecules.
How can laser microscopes help us see more?

Ulrich Simon, Ralf Wolleschensky and Bernhard Zimmermann succeeded in reaching this goal with an innovative detection process. All three of the nominated researchers work for Carl Zeiss Jena GmbH: Ulrich Simon heads the division Microscopy as Executive Vice President and General Manager, Ralf Wolleschensky is development project manager for Advanced Imaging Microscopy, and Bernhard Zimmermann heads product management for the division.

A laser lets marked proteins glow

Biomedical research uses laser microscopy to identify cellular structures. This technology makes structures and processes of movement in cells visible with high spatial accuracy. Functions and dysfunctions can be recognized on the images – and can be used to detect defective growth or, for example, tumors. Fluorescence technology is used to mark objects: components in samples are marked with dyes which then – excited by a laser – emit light and thus become visible. With the fluorescent proteins used, it is possible to mark almost all kinds of protein molecules, but the overlapping colors in the color spectrum do now allow for a definite differentiation of the dyed specimens under a microscope.

The method developed by the researchers from Jena, however, is entirely different: it combines an innovative method of detection with a mathematical analytic process – and thereby makes multifluorescence images of living cells possible even given overlapping of the fluorescence emission spectra.

Mathematics help separate colors

How it works: an optical grating separates the fluorescent emissions of the samples in their color components which are then imaged on a multi-channel detector. The detector measures the exact color distribution of the fluorescence spectrum of every pixel. In this way, the spectral intensity distribution of all sample pixels can be determined. If several dyes are then bound to one sample pixel, the emission spectrum shows the overlapping of the individual colors. These signals are mathematically separated. An image with dyed structures in different colors then becomes visible.

Numerous marked cell and tissue components can be analyzed simultaneously with this process. The components can be easily and accurately typed and dynamic interrelations to living cells can be clearly traced. The new technology which increases the efficiency and speed of analysis has been incorporated in the LSM 510 META Laser Scanning Microscope from Carl Zeiss Jena GmbH.

The right to nominate outstanding achievements for the German Future Award is incumbent on leading German institutions in Science and Industry as well as foundations.

The project “Confocal Laser Scanning Microscope LSM 510 META” was nominated by the Bundesverband der Deutschen Industrie (BDI, Federation of German Industries).