Nominee 2005

Akustische Kamera

Listening with the Eyes: The Acoustic Camera

Dr.-Ing. Gerd Heinz (Spokesperson)
Dipl.-Ing. (FH) Dirk Döbler
Swen Tilgner
Gesellschaft zur Förderung angewandter
Informatik e.V. (GFaI), Berlin

(f.l.t.r.) Dipl.-Ing. (FH) Dirk Döbler, Dipl.-Ing. (FH) Dirk Döbler, Swen Tilgner, Dr.-Ing. Gerd Heinz

Noise can make you ill. Consequently, vehicle and machine designers have the important task of making equipment as quiet running as possible. But how can you find exactly where the source of noise is in a machine?

The answer: you have to make the racket visible to the eye. The technical means to do so have been created by Gerd Heinz, Dirk Döbler, and Swen Tilgner at the Society for the Promotion of Applied Computer Sciences (GFaI) in Berlin with the invention of an “Acoustic Camera”. Gerd Heinz is responsible at GFaI for Acoustic Camera applications, Dirk Döbler heads software development, Swen Tilgner heads the department Production, Procurement, and Engineering.

Making sound visible
To eliminate the sources of noise in a technical system, engineers first have to know the volume produced by the individual parts of a machine. This was often a difficult and time-consuming process in the past.

The Acoustic Camera, however, provides a way of locating noise emissions easily, rapidly, and accurately and thus determine their sources. It is able to produce “sound images” almost as easily as conventional photos are taken with a digital camera. The spatial spreading of sound is thus rendered visible to the human eye.

The Acoustic Camera consists of several microphones arranged in a special pattern. The sounds they record are fed to a data recorder, converted into digital electronic signals and analyzed by a computer. From the different sound waves produced by the different components of a production machine or a vehicle, the PC instantaneously calculates a detailed sound map.

Film the screech of cylinders
With the sound map a digital camera simultaneously takes a picture of the analyzed object. By superimposing both images, it is possible to directly identify and locate what noise is produced where. By recording and joining together several sound images in rapid succession, it is even possible to produce “sound videos” which engineers can use to analyze sound emissions of moving objects, for example, cylinder piston action in an engine.

The research and development team in Berlin introduced the Acoustic Camera to the market in fall 2001. Most units sold to date are used in the automotive industry. Among other things, automotive engineers are interested in the sound design of a vehicle. In the meantime, the sounds of refrigerators, powertrains, and flatscreens are now being optimized with the help of the Acoustic Camera.

The right to nominate outstanding achievements for the German Future Award is incumbent on leading German institutions in Science and Industry as well as foundations.

The Project "Listening with the Eyes: The Acoustic Camera" was nominated by AiF- Arbeitsgemeinschaft industrieller Forschungsvereinigungen.

more details

Resumes

Dr.-Ing. Gerd Heinz

Dr.-Ing. Gerd Heinz

12.05.1954
geboren in Oelsnitz/Vogtland
1972 – 1976
Studium der Elektroniktechnologie und Feingerätetechnik
an der Technischen Universität Dresden
1977 – 1978
Postgraduales Studium der Mikroelektronik an der
Technischen Universität Dresden
1976 – 1988
Konstrukteur, Entwickler, Themenleiter, Gruppenleiter,
Abteilungsleiter im Institut für Nachrichtentechnik,
Berlin-Schöneweide
1977 – 1979
Mitarbeit am ersten Ost-Berliner Mikroprozessorsystem im
Institut für Nachrichtentechnik, Berlin-Schöneweide
1979 – 1980
Entwurf des ersten integrierten Schaltkreises im Berliner
Territorium: PCM-30/32 Regenerator für 2 Mb/s, SBC Master
Slice mit 120 Transistoren im Institut für Nachrichtentechnik,
Berlin-Schöneweide
1988
Promotion
1988 – 1991
Abteilungsleiter am Zentralinstitut für Kybernetik und
Informationsprozesse der Akademie der Wissenschaften,
Berlin
1988 – 1989
Betreuung des größten und letzten ASIC der DDR:
Grayscale Image Preprocessor (GIPP) mit 120.000
Transistoren im Zentralinstitut für Kybernetik und
Informationsprozesse der Akademie der Wissenschaften,
Berlin
1990 – 1991
Synthesewerkzeuge für Datenpfadgenerierung auf Bäumen,
Voraussetzung für schnellstes Pipelining und höchste
Taktraten moderner Prozessoren, im Zentralinstitut für
Kybernetik und Informationsprozesse der Akademie der
Wissenschaften, Berlin
1991
Projektleiter des ersten Schaltkreises (Video-Schnittstellen-
IC „IOP“, 330.000 Transistoren) bei der SICAN GmbH,
Hannover
1992
Mitarbeit am größten IC Deutschlands 16x16 ATM-Koppel-
feld „ISE“, 860.000 Transistoren, bei der SEL AG, Stuttgart
1992 – 1994
Dozent in den Fächern Schaltungstechnik, Mikroprozessor-
technik, Informatik, Fachhochschule für Technik und Wirt-
schaft Berlin
1992 – 1993
Entdeckung spiegelnder Eigenschaften in neuronalen
Netzwerken, Moving- und Zooming-Effekte, Verschmel-
zung, neue Elementarfunktionen des Neurons, Unter-
suchung von Wellen auf Leitbahnen und von Pulswellen-
Abbildungen in privater Initiative, Manuskript „Neuronale
Interferenzen“ 1993
seit 1993
Mitarbeit an der Popularisierung von neuronalen
Interferenzsystemen bei der Gesellschaft zur Förderung
angewandter Informatik e.V., Berlin
seit 1995
Applikation „Akustische Kamera“ bei der Gesellschaft zur
Förderung angewandter Informatik e.V., Berlin

Ehrungen:

1984
„Banner der Arbeit III“ für erste kundenspezifische
Schaltkreise der Nachrichtenelektronik
1985
Bronzene Ehrennadel der Urania für besondere Leistungen
bei der Verbreitung wissenschaftlicher Kenntnisse
1987
„Nationalpreis der DDR, II. Klasse“ für kundenspezifische
Schaltkreise der Nachrichtenelektronik
2001
„Otto-von-Guericke-Preis“ der AiF (1. Preis) für die
Weiterentwicklung akustischer Bildgebungsverfahren
2003
„Innovationspreis Berlin/Brandenburg“ für Akustische Kamera

Dipl.-Ing. (FH) Dirk Döbler

Dipl.-Ing. (FH) Dirk Döbler

16.01.1967
geboren in Rostock
1973 – 1983
Besuch der 59. POS in Rostock
1983 – 1985
Lehre zum Elektromaschinenbauer im VEB Schiffselektronik,
Rostock
1985
Facharbeiter für Elektromaschinenbau
1985 – 1988
Schiffselektriker in der Warnow-Werft, Rostock
1993 – 1994
Erlangung der Fachhochschulreife
1994 – 1998
Studium der Technischen Informatik an der Fachhochschule
Stralsund
1995 – 1998
Stipendiat des Begabtenförderwerkes „Stiftung der
Deutschen Wirtschaft“
1998
Diplom
1998 – 1999
Hardwareentwicklung für die Akustische Kamera bei der
Gesellschaft zur Förderung angewandter Informatik e.V.,
Berlin
1999 – 2003
Softwareentwicklung für die Akustische Kamera bei der
Gesellschaft zur Förderung angewandter Informatik e.V.,
Berlin
seit 2003
Teamleiter der Softwareentwicklung für die Akustische
Kamera bei der Gesellschaft zur Förderung angewandter
Informatik e.V., Berlin

Ehrungen:

2001
Otto-von-Guericke-Preis der AiF
2003
Innovationspreis Berlin/Brandenburg

Swen Tilgner

Swen Tilgner

07.10.1977
geboren in Berlin
1984 – 1994
Besuch der Gesamtschule in Berlin-Buch
1994 – 1998
Ausbildung zum Elektroniker an der Technischen
Universität, Berlin
1998 – 2001
Angestellter im Forschungsbereich Signalverarbeitung
für die Entwicklung von Hardware und Mechanikkomponen-
ten der Akustischen Kamera bei der Gesellschaft zur
Förderung angewandter Informatik e.V., Berlin
2001 – 2005
Leiter Fertigung, Einkauf & Konstruktion Akustische Kamera
bei der Gesellschaft zur Förderung angewandter Informatik
e.V., Berlin

Ehrungen:

2001
Otto-von-Guericke-Preis der AiF
2003
Innovationspreis Berlin/Brandenburg

Kontakt

Spokesperson

Dr.-Ing. Gerd Heinz
Leiter der Entwicklung
Gesellschaft zur Förderung angewandter Informatik (GFaI)
Bereich Akustische Kamera
Rudower Chaussee 30
12489 Berlin
Tel.: +49 (0) 30 / 63 92 16 52
Fax: +49 (0) 30 / 63 92 16 02
E-Mail: heinz@gfai.de

Press

Dagmar Poschenrieder
Sekretariat Signalverarbeitung
Gesellschaft zur Förderung angewandter Informatik (GFaI)
Rudower Chaussee 30
12489 Berlin
Tel.: +49 (0) 30 / 63 92 16 24
Fax: +49 (0) 30 / 63 92 16 30
E-Mail: poschenrieder@gfai.de

A description provided by the institutes and companies regarding their nominated projects

Noise can make you ill. Consequently, vehicle and machine designers have the important task of making equipment as quiet running as possible.

But how can you find exactly where the source of noise is in a machine?

The answer: you have to make the racket visible to the eye. The technical means to do so have been created by Gerd Heinz, Dirk Döbler, and Swen Tilgner at the Society for the Promotion of Applied Computer Sciences (GFaI) in Berlin with the invention of an “Acoustic Camera”. Gerd Heinz is responsible at GFaI for Acoustic Camera applications, Dirk Döbler heads software development, Swen Tilgner heads the department Production, Procurement, and Engineering.

Making sound visible

To eliminate the sources of noise in a technical system, engineers first have to know the volume produced by the individual parts of a machine. This was often a difficult and time-consuming process in the past. The Acoustic Camera, however, provides a way of locating noise emissions easily, rapidly, and accurately and thus determine their sources. It is able to produce “sound images” almost as easily as conventional photos are taken with a digital camera. The spatial spreading of sound is thus rendered visible to the human eye.

The Acoustic Camera consists of several microphones arranged in a special pattern. The sounds they record are fed to a data recorder, converted into digital electronic signals and analyzed by a computer. From the different sound waves produced by the different components of a production machine or a vehicle, the PC instantaneously calculates a detailed sound map.

Film the screech of cylinders

With the sound map a digital camera simultaneously takes a picture of the analyzed object. By superimposing both images, it is possible to directly identify and locate what noise is produced where. By recording and joining together several sound images in rapid succession, it is even possible to produce “sound videos” which engineers can use to analyze sound emissions of moving objects, for example, cylinder piston action in an engine.

The research and development team in Berlin introduced the Acoustic Camera to the market in fall 2001. Most units sold to date are used in the automotive industry. Among other things, automotive engineers are interested in the sound design of a vehicle. In the meantime, the sounds of refrigerators, powertrains, and flatscreens are now being optimized with the help of the Acoustic Camera.

The right to nominate outstanding achievements for the German Future Award is incumbent on leading German institutions in Science and Industry as well as foundations.

The Project „Listening with the Eyes: The Acoustic Camera“ was nominated by AiF- Arbeitsgemeinschaft industrieller Forschungsvereinigungen.